Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine

2023-10-31
2023-01-1617
Thermal barrier coatings (TBCs) have long been studied as a potential pathway to achieve higher thermal efficiency in spark ignition engines. Researchers have studied coatings with different thicknesses and thermophysical properties to counteract the volumetric efficiency penalty associated with TBCs in spark ignition. To achieve an efficiency benefit with minimal charge heating during the intake stroke, low thermal inertia coatings characterized by their larger temperature swings are required. To study the impact of low thermal inertia coatings in spark ignition, coatings were applied to the cylinder head, piston crown, intake and exhaust valve faces, and intake and exhaust valve backsides. Tier III EEE E10 certification gasoline was used to keep the experiments relevant to the present on-road vehicles. This study is aimed at analyzing durability of the coatings as well as efficiency and emissions improvements.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

GT-Suite Modeling of Thermal Barrier Coatings in a Multi-Cylinder Turbocharged DISI Engine for Catalyst Light-Off Delay Improvement

2023-10-31
2023-01-1602
Catalytic converters, which are commonly used for after-treatment in SI engines, exhibit poor performance at lower temperatures. This is one of the main reasons that tailpipe emissions drastically increase during cold-start periods. Thermal inertia of turbocharger casing prolongs the catalyst warm-up time. Exhaust enthalpy management becomes crucial for a turbocharged direct injection spark ignition (DISI) engine during cold-start periods to quickly heat the catalyst and minimize cold-start emissions. Thermal barrier coatings (TBCs), because of their low thermal inertia, reach higher surface temperatures faster than metal walls, thereby blocking heat transfer and saving enthalpy for the catalyst. The TBCs applied on surfaces that exchange heat with exhaust gases can increase the enthalpy available for the catalyst warm-up.
Journal Article

IIoT-Enabled Production System for Composite Intensive Vehicle Manufacturing

2017-03-28
2017-01-0290
The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Journal Article

Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications

2021-04-06
2021-01-0116
Over the years, the complexity of autonomous vehicle development (and concurrently the verification and validation) has grown tremendously in terms of component-, subsystem- and system-level interactions between autonomy and the human users. Simulation-based testing holds significant promise in helping to identify both problematic interactions between component-, subsystem-, and system-levels as well as overcoming delays typically introduced by the default full-scale on-road testing. Software in Loop (SiL) simulation is utilized as an intermediate step towards software deployment for autonomous vehicles (AV) to make them reliable. SiL efforts can help reduce the resources required for successful deployment by helping to validate the software for millions of road miles. A key enabler for accelerating SiL processes is the ability to use Simulation as a Service (SaaS) rather than just isolated instances of software.
Technical Paper

Implementation and Validation of Behavior Cloning Using Scaled Vehicles

2021-04-06
2021-01-0248
Recent trends in autonomy have emphasized end-to-end deep-learning-based methods that have shown a lot of promise in overcoming the requirements and limitations of feature-engineering. However, while promising, the black-box nature of deep-learning frameworks now exacerbates the need for testing with end-to-end deployments. Further, as exemplars of systems-of-systems, autonomous vehicles (AVs) engender numerous interconnected component-, subsystem and system-level interactions. The ensuing complexity creates challenges for verification and validation at the various component, subsystem- and system-levels as well as end-to-end testing. While simulation-based testing is one promising avenue, oftentimes the lack of adequate fidelity of AV and environmental modeling limits the generalizability. In contrast, full-scale AV testing presents the usual limitations of time-, space-, and cost.
Journal Article

Integrated Engine States Estimation Using Extended Kalman Filter and Disturbance Observer

2019-10-22
2019-01-2603
Accurate estimation of engine state(s) is vital for engine control systems to achieve their designated objectives. The fusion of sensors can significantly improve the estimation results in terms of accuracy and precision. This paper investigates using an Extended Kalman Filter (EKF) to estimate engine state(s) for Spark Ignited (SI) engines with the external EGR system. The EKF combines air path sensors with cylinder pressure feedback through a control-oriented engine cycle domain model. The model integrates air path dynamics, torque generation, exhaust gas temperature, and residual gas mass. The EKF generates a cycle-based estimation of engine state(s) for model-based control algorithms, which is not the focus of this paper. The sensor and noise dynamics are analyzed and integrated into the EKF formulation. To account for ‘non-white’ disturbances including modeling errors and sensor/actuator offset, the EKF engine state(s) observer is augmented with disturbance state(s) estimation.
Journal Article

Integration of Autonomous Vehicle Frameworks for Software-in-the-Loop Testing

2020-04-14
2020-01-0709
This paper presents an approach for performing software in the loop testing of autonomous vehicle software developed in the Autoware framework. Autoware is an open source software for autonomous driving that includes modules such as localization, detection, prediction, planning and control [8]. Multitudes of autonomous driving frameworks exist today, each having its own pros and cons. Often, MATLAB-Simulink is used for rapid prototyping, system modeling and testing, specifically for the lower-level vehicle dynamics and powertrain control features. For the autonomous software, the Robotic Operating System (ROS) is more commonly used for integrating distributed software components so that they can easily share information through a publish and subscribe paradigm. Thorough testing and evaluation of such complex, distributed software, implemented on a physical vehicle poses significant challenges in terms of safety, time, and cost, especially when considering rare edge cases.
Technical Paper

Modeling and Validation of Automotive “Smart” Thermal Management System Architectures

2004-03-08
2004-01-0048
The functionality and performance of an internal combustion (spark or compression ignition) engine's thermal management system can be significantly enhanced through the application of mechatronics technology. The replacement of the conventional thermostat valve and mechanical coolant pump in the heating/cooling system by a servo-motor driven smart valve and variable flow pump permits powertrain control module regulated coolant flow through the engine block and radiator. In this paper, a dynamic mathematical model will be created for a 4.6L spark ignition engine to analyze various thermal management system architectures. The designs to be studied include the factory configuration, a smart valve upgrade, and the smart valve combined with a variable flow pump and radiator fan. Representative results are presented and discussed to demonstrate improvements in the engine warm-up time, temperature tracking, and component power consumption.
Technical Paper

Nondestructive Evaluation of Terrain Using mmWave Radar Imaging

2021-04-06
2021-01-0254
Military ground vehicles operate in off-road environments traversing different terrains under various environmental conditions. There has been an increasing interest towards autonomous off-road vehicle navigation, leading to the needs of terrain traversability assessment through sensing. These methods utilized data-driven approaches on classical robotic perception sensing modalities (RGB cameras, Lidar, and depth cameras) positioned in front of ground vehicles in order to observe approaching terrain. Classical robotic sensing modalities, though effective for describing environment geometry and object detection and tracking, aren’t able to directly observe features related to compaction and moisture content which have significant effects on the moduli properties governing terrain mechanics. These methods then become very specialized to specific regions and environmental conditions which are inevitably subject to change.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

Split Injection of High-Ethanol Content Fuels to Reduce Knock in Spark Ignition

2023-04-11
2023-01-0326
Spark ignition engines have low tailpipe criteria pollutants due to their stoichiometric operation and three-way catalysis and are highly controllable. However, one of their main drawbacks is that the compression ratio is low due to knock, which incurs an efficiency penalty. With a global push towards low-lifecycle-carbon renewable fuels, high-octane alternatives to gasoline such as ethanol are attractive options as fuels for spark ignition engines. Under premixed spark ignition operating conditions, ethanol can enable higher compression ratios than regular-grade gasoline due to its high octane number. The high cooling potential of high-ethanol content gasolines, like E85, or of ethanol-water blends, like hydrous ethanol, can be leveraged to further reduce knock and enable higher compression ratios as well as further downsizing and boosting to reduce frictional and throttling losses.
Journal Article

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Synthesis of Statistically Representative Driving Cycle for Tracked Vehicles

2023-04-11
2023-01-0115
Drive cycles are a core piece of vehicle development testing methodology. The control and calibration of the vehicle is often tuned over drive cycles as they are the best representation of the real-world driving the vehicle will see during deployment. To obtain general performance numerous drive cycles must be generated to ensure final control and calibration avoids overfitting to the specifics of a single drive cycle. When real-world driving cycles are difficult to acquire methods can be used to create statistically similar synthetic drive cycles to avoid the overfitting problem. This subject has been well addressed within the passenger vehicle domain but must be expanded upon for utilization with tracked off-road vehicles. Development of hybrid tracked vehicles has increased this need further. This study shows that turning dynamics have significant influence on the vehicle power demand and on the power demand on each individual track.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Journal Article

Virtual Evaluation of Deep Learning Techniques for Vision-Based Trajectory Tracking

2022-03-29
2022-01-0369
Artificial intelligence (AI) enhanced control system deployments are emerging as a viable substitute to more traditional control system. In particular, deep learning techniques offer an alternate approach to tune the ever increasing sets of control system parameters to extract performance. However, the systematic verification and validation (to establish the reliability and robustness) of deep learning based controllers in actual deployments remains a challenge. This is exacerbated by the need to evaluate and optimize control systems embedded within an operational environment (with its own sets of additional unknown or uncertain parameters). Existing literature comparisons of deep learning against traditional controllers, where they may exist, do not offer structured approaches to comparative performance evaluation and improvement. It is also crucial to develop a standardized controlled test environment within which various controllers are evaluated against a common metric.
Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
X